2015年8月23日 星期日

Proof of Chebyshev's inequality

About Posts which Tagged by 'Probability'

Chebyshev's inequality.  Let $X$ be a random variable.  Let $\phi$ be a strictly increasing function on $(0,\infty)$ and $\phi(u)=\phi(-u)$.  Suppose $\mathscr{E}[\phi(X)]<\infty$.  Then $\forall\,u>0$, $$\mathscr{P}\{|X|\geq u\}\leq\frac{\mathscr{E}[\phi(X)]}{\phi(u)}.$$
See List of Inequalities.

$\bullet$ Proof.

Write the expectation as integral formulae.  $$\begin{array}{rl}\mathscr{E}[\phi(X)]
&=\int\phi(x)\,d\mathscr{P}\\
&\geq\int_{|x|\geq u}\phi(x)\,d\mathscr{P} \\
&\geq\int_{|x|\geq u}\phi(u)\,d\mathscr{P}=\phi(u)\mathscr{P}\{|X|\geq u\}. \end{array}$$Thus, $$\mathscr{P}\{|X|\geq u\}\leq\frac{\mathscr{E}[\phi(X)]}{\phi(u)}.$$

$\Box$

沒有留言:

張貼留言