$\star$ Contents
Probability Theories
Definitions
Probability Measure
Important Lemma and Theorems
Convergence Theorems
Proof of Fatou's Lemma
Borel-Cantelli Lemma
Counterexample for Converse of Borel-Cantelli Lemma I
Varied Type of Borel-Cantelli Lemma I
Varied Type of Borel-Cantelli Lemma II
Extension of Borel-Cantelli Lemma II
About The Expectation
Expectation and Tail Probability (1)
Expectation and Tail Probability (2)
Expectation and Tail Probability (3)
Independence and Fubini's Theorem
Inequalities
Inequalities for Random Variable
Convergence Theories
Convergence Modes and Their Relationship
Almost Surely Convergence
Converge Almost Surely v.s. Converge in r-th Mean
Converge Almost Surely v.s. Converge in Probability
Converge in r-th Mean v.s. Converge in Probability
Converge in Distribution and Vague Convergence (1): Equivalence for s.p.m.'s
Converge in Distribution and Vague Convergence (2): Equivalence for p.m.'s
Converge in Probability v.s. Converge in Distribution
Slutsky's Theorem
Varied Type of Slutsky's Theorem (1): Converge in Probability
Varied Type of Slutsky's Theorem (2): Converge in r-th Mean
Uniformly Integrability
Convergence of Moments (1)
Convergence of Moments (2)
Convergence of Moments (3)
The Law of Large Numbers
Simple Limit Theorems
Weak Law of Large Number
Extension of Weak Law of Large Number (1)
Extension of Weak Law of Large Number (2)
Kolmogorov's Three Series Theorem
Equivalence of Convergence of Sum of Random Variables
Application of Three Series Theorem on Strong Convergence
Strong Law of Large Number
Extension of Strong Law of Large Number
Strong LLN v.s. Weak LLN
Characteristic Function
Characteristic Functions
Convergence of the Characteristic Functions
Representation of the Characteristic Function
The Central Limit Theorems
The Classical Central Limit Theorem
Uniformly Asymptotically Negligible
Uniformly Asymptotically Negligible (2): Connect to the Characteristic Function
Lyapunov's Central Limit Theorem
Linderberg-Feller's Central Limit Theorem (short version)
Linderberg-Feller's Central Limit Theorem (completed)
Lindeberg's Condition Implies Each Variance to Be Similarly Small
Counterexample for Omitting UAN Condition in Feller's Proof
Lindeberg's CLT v.s. Lyapunov's CLT
Applications
Application of Fubini's Theorem (1)
Application of Fubini's Theorem (2)
Application of Fatou's Lemma
Application of Dominate Convergence Theorem
Application of Borel-Cantelli Lemma
Related Topic with Uniformly Integrable
Cantelli's Law of Large Numbers
Application of Three Series Theorem on Strong Convergence
Application of the Characteristic Function (1)
Application of the Characteristic Function (2)
Application of The Classical Central Limit Theorem (1)
Application of The Classical Central Limit Theorem (2)
Application of Lyapunov's Central Limit Theorem (1)
Application of Lyapunov's Central Limit Theorem (2): Coupon Collector's Problem
Application of Lyapunov's Central Limit Theorem (3)
Application of Lyapunov's Central Limit Theorem (4)
Application of Lindeberg's Central Limit Theorem (1)
Application of Lindeberg's Central Limit Theorem (2)
Application of Lindeberg's Central Limit Theorem (3): NOT converge to Normal
$\star$ All the content of the posts tagged by 'Probability' are not my original publication. They are my notes of a class in 2014 Spring, named "Advanced Probability Theory", in Dept. of Stat., NCKU, Taiwan. The readers can also find the similar contents in the following textbooks, or any articles which introduce the probability theory.
$\bullet$ Reference
Billingsley, P. (1995) Probability and Measure. John Wiley & Sons.
Chung, K. L. (2001). A course in probability theory. Academic press.
Ferguson, T. S. (1996). A course in large sample theory. London: Chapman & Hall.
Ping Yang Chen's Blog
2150年6月30日 星期二
2015年9月7日 星期一
Varied Type of Borel-Cantelli Lemma II
About Posts which Tagged by 'Probability'
Let $\{E_n\}$ be arbitrary events in $\mathscr{F}$. If for each $m$, $\sum_{n>m}\mathscr{P}\{E_n\mid E_m^c\cap\cdots\cap E_{n-1}^c\}=\infty$, then $\mathscr{P}\{E_n\mbox{ i.o.}\}=1.$
$\bullet$ Proof.
Let $\{E_n\}$ be arbitrary events in $\mathscr{F}$. If for each $m$, $\sum_{n>m}\mathscr{P}\{E_n\mid E_m^c\cap\cdots\cap E_{n-1}^c\}=\infty$, then $\mathscr{P}\{E_n\mbox{ i.o.}\}=1.$
$\bullet$ Proof.
2015年9月6日 星期日
Convergence of Moments (3)
About Posts which Tagged by 'Probability'
Let $\{X_n\}$ and $X$ be random variables. Let $0<r<\infty$, $X_n\in L^r$, and $X_n\rightarrow X$ in probability. Then the following three propositions are equivalent.
(1) $\{|X_n|^r\}$ is uniformly integrable;
(2) $X_n\rightarrow X$ in $L^r$;
(3) $\mathscr{E}|X_n|^r\rightarrow\mathscr{E}|X|^r<\infty$.
$\bullet$ Proof.
Let $\{X_n\}$ and $X$ be random variables. Let $0<r<\infty$, $X_n\in L^r$, and $X_n\rightarrow X$ in probability. Then the following three propositions are equivalent.
(1) $\{|X_n|^r\}$ is uniformly integrable;
(2) $X_n\rightarrow X$ in $L^r$;
(3) $\mathscr{E}|X_n|^r\rightarrow\mathscr{E}|X|^r<\infty$.
$\bullet$ Proof.
Convergence of Moments (2)
About Posts which Tagged by 'Probability'
Let $\{X_n\}$ and $X$ be random variables. If $X_n$ converges in distribution to $X$, and for some $p>0$, $\sup_n\mathscr{E}|X_n|^p=M<\infty$, then for each $r<p$, $$\underset{n\rightarrow\infty}{\lim}\mathscr{E}|X_n|^r=\mathscr{E}|X|^r<\infty.$$
$\bullet$ Proof.
Let $\{X_n\}$ and $X$ be random variables. If $X_n$ converges in distribution to $X$, and for some $p>0$, $\sup_n\mathscr{E}|X_n|^p=M<\infty$, then for each $r<p$, $$\underset{n\rightarrow\infty}{\lim}\mathscr{E}|X_n|^r=\mathscr{E}|X|^r<\infty.$$
$\bullet$ Proof.
Convergence of Moments (1)
About Posts which Tagged by 'Probability'
Let $\{X_n\}$ and $X$ be random variables. If $X_n\rightarrow X$ a.e., then for every $r>0$, $$\mathscr{E}|X|^r\leq\underset{n\rightarrow\infty}{\underline{\lim}}\mathscr{E}|X_n|^r.$$If $X_n\rightarrow X$ in $L^r$, and $X\in L^r$, then $\mathscr{E}|X_n|^r\rightarrow\mathscr{E}|X|^r$.
$\bullet$ Proof.
Let $\{X_n\}$ and $X$ be random variables. If $X_n\rightarrow X$ a.e., then for every $r>0$, $$\mathscr{E}|X|^r\leq\underset{n\rightarrow\infty}{\underline{\lim}}\mathscr{E}|X_n|^r.$$If $X_n\rightarrow X$ in $L^r$, and $X\in L^r$, then $\mathscr{E}|X_n|^r\rightarrow\mathscr{E}|X|^r$.
$\bullet$ Proof.
2015年9月4日 星期五
Characteristic Functions
About Posts which Tagged by 'Probability'
For any random variable $X$ with probability measure $\mu$ and distribution function $F$, the characteristic function (ch.f.) is a function $f$ on $\mathbb{R}$ defined as $$f(t)=\mathscr{E}\left(e^{itX}\right)=\int_{-\infty}^\infty e^{itx}\,dF(x)\mbox{ for all }t\in\mathbb{R}.$$There are some simple properties of ch.f.:
For any random variable $X$ with probability measure $\mu$ and distribution function $F$, the characteristic function (ch.f.) is a function $f$ on $\mathbb{R}$ defined as $$f(t)=\mathscr{E}\left(e^{itX}\right)=\int_{-\infty}^\infty e^{itx}\,dF(x)\mbox{ for all }t\in\mathbb{R}.$$There are some simple properties of ch.f.:
2015年9月3日 星期四
Cantelli's Law of Large Numbers
About Posts which Tagged by 'Probability'
If $\{X_n\}$ are independent random variables such that the fourth moments $\mathscr{E}(X_n^4)$ have a common bound and define $S_n=\sum_{j=1}^nX_j$, then $$\frac{S_n-\mathscr{E}(S_n)}{n}\rightarrow0\mbox{ a.e.}$$
$\bullet$ Proof.
WLOG, suppose $\mathscr{E}(X_n)=0$ for all $n$ and denote the common bound of $\mathscr{E}(X_n^4)$ to be $$\mathscr{E}(X_n^4)\leq M_4<\infty\mbox{ for all }n.$$Then by Lyapunov's inequality, we have the second moments $$\mathscr{E}|X_n|^2\leq\left[\mathscr{E}|X_n|^4\right]^\frac{2}{4}\leq \sqrt{M_4}<\infty.$$Consider the fourth moment of $S_n$, $$\begin{array}{rl}\mathscr{E}(S_n^4)
&=\mathscr{E}\left[\left(\sum_{j=1}^nX_j\right)^4\right]\\ &= \mathscr{E}\left[\sum_{j=1}^nX_j^4+{4\choose1}\sum_{i\neq j}X_iX_j^3+{4\choose2}\sum_{i\neq j}X_i^2X_j^2\right.\\ &\quad\left.+{4\choose1}{3\choose1}\sum_{i\neq j\neq k}X_iX_jX_k^2+{4\choose1}{3\choose1}{2\choose1}\sum_{i\neq j\neq k\neq l}X_iX_jX_kX_l\right]\\
&=\sum_{j=1}^n\mathscr{E}(X_j^4)+4\sum_{i\neq j}\mathscr{E}(X_i)\mathscr{E}(X_j^3)+6\sum_{i\neq j}\mathscr{E}(X_i^2)\mathscr{E}(X_j^2)\quad(\because\mbox{ indep.})\\ &\quad+12\sum_{i\neq j\neq k}\mathscr{E}(X_i)\mathscr{E}(X_j)\mathscr{E}(X_k^2)+24\sum_{i\neq j\neq k\neq l}\mathscr{E}(X_i)\mathscr{E}(X_j)\mathscr{E}(X_k)\mathscr{E}(X_l)\\ &=\sum_{j=1}^n\mathscr{E}(X_j^4)+6\sum_{i\neq j}\mathscr{E}(X_i^2)\mathscr{E}(X_j^2)\qquad\qquad(\because\mbox{ assuming }\mathscr{E}(X_n)=0.) \\ &\leq nM_4+3n(n-1)\sqrt{M_4}\sqrt{M_4}=n(3n-2)M_4.\end{array}$$By Markov's inequality, for $\varepsilon>0$, $$\mathscr{P}\{|S_n|>n\varepsilon\}\leq\frac{\mathscr{E}(S_n^4)}{n^4\varepsilon^4}\leq\frac{n(3n-2)M_4}{n^4\varepsilon^4}=\frac{3M_4}{n^2\varepsilon^4}+\frac{2M_4}{n^3\varepsilon^4}.$$Thus, $$\sum_n\mathscr{P}\{|S_n|>n\varepsilon\}\leq\sum_n\frac{3M_4}{n^2\varepsilon^4}+\frac{2M_4}{n^3\varepsilon^4}<\infty.$$By Borel-Cantelli Lemma I, we have $$\mathscr{P}\{|S_n|>n\varepsilon\mbox{ i.o.}\}=0\implies\frac{S_n}{n}\rightarrow0\mbox{ a.e.}$$
If $\{X_n\}$ are independent random variables such that the fourth moments $\mathscr{E}(X_n^4)$ have a common bound and define $S_n=\sum_{j=1}^nX_j$, then $$\frac{S_n-\mathscr{E}(S_n)}{n}\rightarrow0\mbox{ a.e.}$$
$\bullet$ Proof.
WLOG, suppose $\mathscr{E}(X_n)=0$ for all $n$ and denote the common bound of $\mathscr{E}(X_n^4)$ to be $$\mathscr{E}(X_n^4)\leq M_4<\infty\mbox{ for all }n.$$Then by Lyapunov's inequality, we have the second moments $$\mathscr{E}|X_n|^2\leq\left[\mathscr{E}|X_n|^4\right]^\frac{2}{4}\leq \sqrt{M_4}<\infty.$$Consider the fourth moment of $S_n$, $$\begin{array}{rl}\mathscr{E}(S_n^4)
&=\mathscr{E}\left[\left(\sum_{j=1}^nX_j\right)^4\right]\\ &= \mathscr{E}\left[\sum_{j=1}^nX_j^4+{4\choose1}\sum_{i\neq j}X_iX_j^3+{4\choose2}\sum_{i\neq j}X_i^2X_j^2\right.\\ &\quad\left.+{4\choose1}{3\choose1}\sum_{i\neq j\neq k}X_iX_jX_k^2+{4\choose1}{3\choose1}{2\choose1}\sum_{i\neq j\neq k\neq l}X_iX_jX_kX_l\right]\\
&=\sum_{j=1}^n\mathscr{E}(X_j^4)+4\sum_{i\neq j}\mathscr{E}(X_i)\mathscr{E}(X_j^3)+6\sum_{i\neq j}\mathscr{E}(X_i^2)\mathscr{E}(X_j^2)\quad(\because\mbox{ indep.})\\ &\quad+12\sum_{i\neq j\neq k}\mathscr{E}(X_i)\mathscr{E}(X_j)\mathscr{E}(X_k^2)+24\sum_{i\neq j\neq k\neq l}\mathscr{E}(X_i)\mathscr{E}(X_j)\mathscr{E}(X_k)\mathscr{E}(X_l)\\ &=\sum_{j=1}^n\mathscr{E}(X_j^4)+6\sum_{i\neq j}\mathscr{E}(X_i^2)\mathscr{E}(X_j^2)\qquad\qquad(\because\mbox{ assuming }\mathscr{E}(X_n)=0.) \\ &\leq nM_4+3n(n-1)\sqrt{M_4}\sqrt{M_4}=n(3n-2)M_4.\end{array}$$By Markov's inequality, for $\varepsilon>0$, $$\mathscr{P}\{|S_n|>n\varepsilon\}\leq\frac{\mathscr{E}(S_n^4)}{n^4\varepsilon^4}\leq\frac{n(3n-2)M_4}{n^4\varepsilon^4}=\frac{3M_4}{n^2\varepsilon^4}+\frac{2M_4}{n^3\varepsilon^4}.$$Thus, $$\sum_n\mathscr{P}\{|S_n|>n\varepsilon\}\leq\sum_n\frac{3M_4}{n^2\varepsilon^4}+\frac{2M_4}{n^3\varepsilon^4}<\infty.$$By Borel-Cantelli Lemma I, we have $$\mathscr{P}\{|S_n|>n\varepsilon\mbox{ i.o.}\}=0\implies\frac{S_n}{n}\rightarrow0\mbox{ a.e.}$$
$\Box$
訂閱:
文章 (Atom)