2015年8月15日 星期六

Strong LLN v.s. Weak LLN

About Posts which Tagged by 'Probability'

It is clear that SLLN implies WLLN since almost surely convergence implies converge in probability.  Here, we introduce a counterexample that satisfies WLLN but not SLLN.

$\bullet$ Counterexample. (WLLN $\not\Rightarrow$ SLLN)


Let $\{X_n\}$ be independent random variables with a common d.f. $F$ such that $$\mathscr{P}\{X_1=n\}=\mathscr{P}\{X_1=-n\}=\frac{c}{n^2\log{n}},\;n=3,4,\ldots,$$where $c$ is a constant $$c=\frac{1}{2}\left(\sum_{n=3}^\infty\frac{1}{n^2\log{n}}\right)^{-1}.$$According to the Extension of Weak Law of Large Number (1), let $b_n=n$, we have for large $n$, $$n\int_{|x|>n}\,dF(x)=n\sum_{k>n}\frac{c}{k^2\log{k}}\sim\frac{c}{\log{n}}=o(1),$$
$$\frac{1}{n^2}\cdot n\int_{|x|\leq n}x^2\,dF(x)=\frac{1}{n}\sum_{k=3}^n\frac{ck^2}{k^2\log{k}}\sim\frac{c}{\log{n}}=o(1).$$Thus the two conditions are satisfied and $$a_n=\sum_{j=1}^n\int_{|x|\leq n}x\,dF(x)=0.$$Hence, $S_n/n\rightarrow0$ in probability.

But, we have $$\mathscr{P}\{|X_1|>n\}=\int_{|x|>n}\,dF(x)=\sum_{k>n}\frac{c}{k^2\log{k}}\sim\frac{c}{n\log{n}}.$$By the r.v.'s sharing the same d.f., $$\sum_n\mathscr{P}\{|X_n|>n\}=\sum_n\mathscr{P}\{|X_1|>n\}=\infty.$$Thus, by Borel-Cantelli Lemma, we have $$\mathscr{P}\{|X_n|>n\mbox{ i.o.}\}=1.$$Now, let's discuss the convergence of $S_n$.  $|S_n-S_{n-1}|=|X_n|>n$ implies either $|S_n|>n/2$ or $|S_{n-1}|>n/2$.  It follows that $$\mathscr{P}\left\{|S_n|>\frac{n}{2}\mbox{ i.o.}\right\}=1,$$that is, $S_n/n\not\overset{a.s.}{\rightarrow}0.$

$\Box$

沒有留言:

張貼留言