2015年8月31日 星期一

Convergence of the Characteristic Functions

About Posts which Tagged by 'Probability'

[Theorem 1] Vague convergence implies convergence of ch.f.
Let $\{\mu_n,\,1\leq n\leq\infty\}$ be probability measures on $\mathbb{R}$ with ch.f.'s $\{f_n,\,1\leq n\leq\infty\}$.  We have $$\mu_n\overset{v}{\rightarrow}\mu_\infty\implies f_n\rightarrow f_\infty\mbox{ uniformly in every finite interval.}$$

[Theorem 2] Convergence of ch.f. implies vague convergence.
Let $\{\mu_n,\,1\leq n<\infty\}$ be probability measures on $\mathbb{R}$ with ch.f.'s $\{f_n,\,1\leq n<\infty\}$.  Suppose that 
  (a1) $f_n$ converges everywhere in $\mathbb{R}$, say $f_n\rightarrow f_\infty$.
  (a2) $f_\infty$ is continuous at $t=0$.

Then we have 
  (b1) $\mu_n\overset{v}{\rightarrow}\mu_\infty$, where $\mu_\infty$ is a probability measure. 
  (b2) $f_\infty$ is the ch.f. of $\mu_\infty$.

General Conditions for A Series Converging as An Exponential Term

About Posts which Tagged by 'Probability'

Let $\{\theta_{nj},\,1\leq j \leq k_n,\,1\leq n\}$ be a double array of complex numbers satisfying the following conditions as $n\rightarrow\infty$:

(1) $\displaystyle\underset{1\leq j \leq k_n}{\max}|\theta_{nj}|\rightarrow0;$
(2) $\displaystyle\sum_{j=1}^{k_n}|\theta_{nj}|\leq M<\infty$, where $M$ does not depend on $n$;
(3) $\displaystyle\sum_{j=1}^{k_n}\theta_{nj}\rightarrow\theta$, where $\theta$ is a (finite) complex number.

Then we have $$\prod_{j=1}^{k_n}(1+\theta_{nj})\rightarrow e^\theta.$$

$\bullet$ Proof.

2015年8月28日 星期五

Varied Type of Borel-Cantelli Lemma I

About Posts which Tagged by 'Probability'

Let $\{E_n\}$ be arbitrary events satisfying

(1) $\underset{n}{\lim}\mathscr{P}(E_n)=0$;
(2) $\underset{n}{\sum}\mathscr{P}(E_nE_{n+1}^c)<\infty$,

then $\mathscr{P}\{\limsup_n E_n\}=0$.

 $\bullet$ Proof.

2015年8月27日 星期四

Application of the Characteristic Function (2)

About Posts which Tagged by 'Probability'

Let $X_n$ have the binomial distribution with parameter $(n,p_n)$, and suppose that $n\,p_n\rightarrow\lambda\geq0$. Prove that $X_n$ converges in dist. to the Poisson d.f. with parameter $\lambda$. (In the old days this was called the law of small numbers.)

$\bullet$ Proof.

Application of The Classical Central Limit Theorem (2)

About Posts which Tagged by 'Probability'

Let $\{X_j,\,j\geq1\}$ be independent, identically distributed r.v.'s with mean $0$ and variance $1$. Prove that both $$\frac{\displaystyle\sum_{j=1}^nX_j}{\sqrt{\displaystyle\sum_{j=1}^nX^2_j}}\quad
\mbox{ and }\quad\frac{\displaystyle{\sqrt{n}\sum_{j=1}^nX_j}}{\displaystyle\sum_{j=1}^nX^2_j}$$converge in distribution to $\Phi$.

$\bullet$ Proof.

Application of The Classical Central Limit Theorem (1)

About Posts which Tagged by 'Probability'

Let $X_\lambda$ have the Poisson distribution with parameter $\lambda$.  Consider the limit distribution of $(X_\lambda-\lambda)/\lambda^{1/2}$ as $\lambda\rightarrow\infty$.  Since $X_\lambda\sim\textit{Poi}\,(\lambda)$, we have $$\mathscr{E}(X_\lambda)=\lambda\mbox{ and }\sigma^2(X_\lambda)=\lambda.$$ $X_\lambda$ is a single random variable which of course be i.i.d.  Thus by the Classical Central Limit Theorem, we have  $$\frac{X_\lambda-\mathscr{E}(X_\lambda)}{\sigma(X_\lambda)\sqrt{1}} = \frac{X_\lambda-\lambda}{\lambda^{1/2}}\overset{\mathscr{L}}{\longrightarrow}\boldsymbol{\Phi},
$$where $\boldsymbol{\Phi}$ is normal distribution with mean 0 and variance 1.

$\Box$

Linderberg-Feller's Central Limit Theorem (completed)

About Posts which Tagged by 'Probability'

Let $\{X_{nj}\}$, $n=1,2,...$, $j=1,2,...,k_n$, be a double array of random variables and for each $n$, $X_{n1},\ldots,X_{nk_n}$ are independent.  Define $S_n=\sum_{j=1}^{k_n}X_{nj}$ and
$$\begin{array}{ll}
\mathscr{E}(X_{nj})=\alpha_{nj}, & \mathscr{E}(S_n)=\sum_{j=1}^{k_n}\alpha_{nj}=\alpha_n; \\
\sigma^2(X_{nj})=\sigma^2_{nj}, & \sigma^2(S_n)=\sum_{j=1}^{k_n}\sigma^2_{nj}=s^2_n. \\
\end{array}$$Suppose $\alpha_{nj}=0$ for all $n$ and $j$, and $s^2_n=1$.  In order that as $n\rightarrow\infty$ the two conclusions below both hold:

(1) $S_n$ converges in distribution to $\Phi$.
(2) $\{X_{nj}\}$ is uniformly asymptotically negligible (UAN);

it is necessary and sufficient that for each $\eta>0$, we have $$\underset{n\rightarrow\infty}{\lim}\sum_{j=1}^{k_n}\mathscr{E}\left[X_{nj}^2\,I\left(|X_{nj}|>\eta\right)\right]=0$$

$\bullet$ Proof.

2015年8月26日 星期三

Uniformly Asymptotically Negligible (2): Connect to the Characteristic Function

About Posts which Tagged by 'Probability'

Let $\{X_{nj}\}$, $n=1,2,...$, $j=1,2,...,k_n$, be a double array of random variables and $\{f_{nj}(t)\}$ be their ch.f.'s.  $$\forall\,\varepsilon>0,\,\underset{n\rightarrow\infty}{\lim}\max_{1\leq j\leq k_n}\mathscr{P}\{|X_{nj}|>\varepsilon\}=0\iff\forall\,t\in\mathbb{R},\,\underset{n\rightarrow\infty}{\lim}\max_{1\leq j\leq k_n}\left|f_{nj}(t)-1\right|=0.$$

$\bullet$ Proof.

Counterexample for Converse of Borel-Cantelli Lemma I

About Posts which Tagged by 'Probability'

Let $\mathscr{F}$ be a Borel field and $\{E_n\}_{n\geq1}\in\mathscr{F}$ are events.  We have the first Borel-Cantelli Lemma $$\sum_{n=1}^\infty \mathscr{P}\{E_n\} < \infty \implies \mathscr{P}\{E_n\mbox{ i.o.}\}=0,$$but, the converse is NOT true.


$\bullet$ Counterexample.

Equivalence of Convergence of Sum of Random Variables

About Posts which Tagged by 'Probability'

Let $\{X_n\}$ be a sequence of independent random variables, then $$\sum_nX_n\mbox{ converges a.e.}\iff\sum_nX_n\mbox{ converges in probability}.$$

$\bullet$ Proof.

Proof of Chebyshev Type for Maximal Sum of Random Variables II

About Posts which Tagged by 'Probability'

Chebyshev type for maximal sum of random variables II.  Let $\{X_n\}$ be independent random variables with finite means and suppose that there exists an $A$ such that $$\forall\,n,\,|X_n-\mathscr{E}(X_n)|\leq A<\infty,$$Then let $S_n=\sum_{j=1}^nX_j$, we have for every $\varepsilon>0$, $$\mathscr{P}\left\{\underset{1\leq j\leq n}{\max}|S_j|\leq\varepsilon\right\}\leq\frac{(2A+4\varepsilon)^2}{\sigma^2(S_n)}.$$
See List of Inequalities.

$\bullet$ Proof.

Proof of Chebyshev Type for Maximal Sum of Random Variables I

Declaration for Posts which Tagged by 'Probability'

Chebyshev type for maximal sum of random variables I.  Let $\{X_n\}$ be independent random variables such that $\mathscr{E}(X_n)=0$ and $\mathscr{E}(X_n^2)=\sigma^2(X_n)<\infty$ for all $n$, then let $S_n=\sum_{j=1}^nX_j$, we have for every $\varepsilon>0$, $$\mathscr{P}\left\{\underset{1\leq j\leq n}{\max}|S_j|>\varepsilon\right\}\leq\frac{\sigma^2(S_n)}{\varepsilon^2}.$$
See List of Inequalities.

$\bullet$ Proof.

2015年8月25日 星期二

Extension of Weak Law of Large Number (2)

About Posts which Tagged by 'Probability'

Let $\{X_n\}$ be a sequence of pairwisely independent random variables with common distribution functions $F$.  Define $S_n=\sum_j X_j$.  Suppose that we have
(1) $\displaystyle\int_{|x|\leq n}x\,dF(x)=o(1)$,
(2) $\displaystyle n\int_{|x|>n}\,dF(x)=o(1)$;
then $$\frac{S_n}{n}\rightarrow0\mbox{ in probability.}$$

$\bullet$ Proof.

Uniformly Asymptotically Negligible

About Posts which Tagged by 'Probability'

Let $\{X_{nj}\}$, $n=1,2,...$, $j=1,2,...,k_n$, be a double array of random variables.  We have the following criteria of "negligibility".  For $\varepsilon>0$,

(a) $\displaystyle\forall\,j:\quad\underset{n\rightarrow\infty}{\lim}\mathscr{P}\{|X_{nj}|>\varepsilon\}=0$;

(b) $\displaystyle\underset{n\rightarrow\infty}{\lim}\max_{1\leq j\leq k_n}\mathscr{P}\{|X_{nj}|>\varepsilon\}=0$;

(c) $\displaystyle\underset{n\rightarrow\infty}{\lim}\mathscr{P}\left\{\max_{1\leq j\leq k_n}|X_{nj}|>\varepsilon\right\}=0$;

(d) $\displaystyle\underset{n\rightarrow\infty}{\lim}\sum_{j=1}^{k_n}\mathscr{P}\{|X_{nj}|>\varepsilon\}=0$.

[Definition] $\{X_{nj}\}$ is called Uniformly Asymptotically Negligible (UAN, holospoudic) if (b) holds.

The implications $(d)\Rightarrow(c)\Rightarrow(b)\Rightarrow(a)$ are all strict.  On the other hand, if for each $n$, $X_{n1},\ldots,X_{nk_n}$ are independent, then $(d)\equiv(c)$.

$\bullet$ Proof.

Converge in Distribution and Vague Convergence (2): Equivalence for p.m.'s

About Posts which Tagged by 'Probability'

[Notations] Sets of Continuous functions.
$C_K\,$: the set of continuous functions $f$ each vanishing outside a compact set $K(f)$.
$C_0\;\,$: the set of continuous functions $f$ such that $\lim_{|x|\rightarrow\infty}f(x)=0$.
$C_B\,$: the set of bounded continuous functions.
$C\;\;\,$: the set of continuous functions.
It is clearly that $f\in C_K\implies f\in C_0\implies f\in C_B\implies f\in C$.

[Theorem] Let $\{\mu_n\}_{n\geq1}$ and $\mu$ be a sequence of p.m.'s, then $$\mu_n\overset{v}{\longrightarrow}\mu\iff\forall\,f\in C_B,\;\int f\,d\mu_n\rightarrow\int f\,d\mu.$$

$\bullet$ Proof.

2015年8月24日 星期一

Application of the Characteristic Function (1)

About Posts which Tagged by 'Probability'

Suppose that $X$ and $Y$ are i.i.d. random variables such that $\mathscr{E}(X)=\mathscr{E}(Y)=0$ and $\mathscr{E}(X^2)=\mathscr{E}(Y^2)=1$.  If $\frac{X+Y}{\sqrt{2}}$ have the same distribution as $X$, then $X$, $Y$ have the standard normal distribution.

$\bullet$ Proof.

Application of Lyapunov's Central Limit Theorem (4)

About Posts which Tagged by 'Probability'

Let $\{X_n,\,n\geq1\}$ be a sequence of uniformly bounded independent random variables, and $S_n=\sum_{i=1}^nX_i$.  Suppose $\sigma^2_n=\mbox{Var}(S_n)\rightarrow\infty$ as $n\rightarrow\infty$, then $$\frac{S_n-\mathscr{E}(S_n)}{\sigma_n}\overset{d}{\rightarrow}\Phi.$$
$\bullet$ Proof.

Proof of Cantelli's Inequality

About Posts which Tagged by 'Probability'

Cantelli's inequality.  Suppose $\sigma^2=\mbox{Var}(X)<\infty$.  Then for $a>0$, we have $$\mathscr{P}\{|X-\mathscr{E}(X)|>a\}\leq\frac{2\sigma^2}{a^2+\sigma^2}.$$
See List of Inequalities.

$\bullet$ Proof.

Proof of Inequality (6)

About Posts which Tagged by 'Probability'

Let $X$ and $Y$ be random variables.  If $X\geq0$ and $Y\geq0$, $p\geq0$, then $$\mathscr{E}\{(X+Y)^p\}\leq2^p\{\mathscr{E}(X^p)+\mathscr{E}(Y^p)\}.$$If $p>1$, the factor $2^p$ may be replaced by $2^{p-1}$. If $0\leq p\leq1$, it may be replaced by $1$.

See List of Inequalities.

$\bullet$ Proof.

Application of Lindeberg's Central Limit Theorem (3): NOT converge to Normal

About Posts which Tagged by 'Probability'

Let $\{X_n,\,n\geq1\}$ be independent random variables with $$\mathscr{P}\{X_k=\pm1\}=\frac{1}{2}\left(1-\frac{1}{k}\right)\mbox{ and }\mathscr{P}\{X_k=\pm\sqrt{k}\}=\frac{1}{2k}.$$Let $S_n=\sum_{k=1}^n$, we show that $S_n$ does NOT converge to normal distribution by the divergence of the Lindeberg's condition.

First, we evaluate the mean and variance of $X_k$'s and $S_n$, $$\begin{array}{rl}&\mathscr{E}(X_k)=\frac{1}{2}\left(1-\frac{1}{k}\right)-\frac{1}{2}\left(1-\frac{1}{k}\right)+\sqrt{k}\frac{1}{2k}-\sqrt{k}\frac{1}{2k}=0\\ \implies & \mathscr{E}(S_n)=\sum_{k=1}^n\mathscr{E}(X_k)=0.\end{array}$$ And, $$\sigma^2(X_k)=\mathscr{E}(X_k^2)=\frac{1}{2}\left(1-\frac{1}{k}\right)+\frac{1}{2}\left(1-\frac{1}{k}\right)+k\frac{1}{2k}+k\frac{1}{2k}=2-\frac{1}{k},$$then $$B_n^2=\sigma^2(S_n)=\sum_{k=1}^n\sigma^2(X_k)=2n-\sum_{k=1}^n\frac{1}{k}.$$Let $\eta=B_n^{-1}$, the Lindeberg's condition $$\begin{array}{rl}\frac{1}{B_n^2}\sum_{k=1}^n\mathscr{E}\left(X_k^2\,I\{|X_k|>\eta B_n\}\right) & = \frac{1}{B_n^2}\sum_{k=1}^n\mathscr{E}\left(X_k^2\,I\{|X_k|>1\}\right) \\ & = \frac{1}{B_n^2}\sum_{k=1}^n\left(k\frac{1}{2k}+k\frac{1}{2k}\right) \\ & = \frac{n}{2n-\sum_{k=1}^n\frac{1}{k}}\\ & \rightarrow \frac{1}{2}\neq0\mbox{ as }n\rightarrow\infty.\end{array}$$That is, there exists a $\eta=B_n^{-1}$ such that the Lindeberg's condition is failed.  By the relationship between the Lindeberg's condition and the Lyapunov's condition, we also have that the Lyapunov's condition is failed.  Thus, $S_n$ does NOT converge to normal distribution.

$\Box$


Application of Lyapunov's Central Limit Theorem (3)

About Posts which Tagged by 'Probability'

Let $\{X_n,\,n\geq1\}$ be independent random variables with $$\mathscr{P}\{X_k=\pm1\}=\frac{1}{2}\left(1-\frac{1}{k^2}\right)\mbox{ and }\mathscr{P}\{X_k=\pm\sqrt{k}\}=\frac{1}{4k^2}.$$Let $S_n=\sum_{k=1}^n$, we show that $S_n/B_n$ converges to normal distribution for some normalizing constants $B_n$.

First, we evaluate the mean and variance of $X_k$'s and $S_n$, $$\begin{array}{rl}&\mathscr{E}(X_k)=\frac{1}{2}\left(1-\frac{1}{k^2}\right)-\frac{1}{2}\left(1-\frac{1}{k^2}\right)+\sqrt{k}\frac{1}{4k^2}-\sqrt{k}\frac{1}{4k^2}=0\\ \implies & \mathscr{E}(S_n)=\sum_{k=1}^n\mathscr{E}(X_k)=0.\end{array}$$ And, $$\sigma^2(X_k)=\mathscr{E}(X_k^2)=\frac{1}{2}\left(1-\frac{1}{k^2}\right)+\frac{1}{2}\left(1-\frac{1}{k^2}\right)+k\frac{1}{4k^2}+k\frac{1}{4k^2}=1+\frac{1}{2k}-\frac{1}{k^2},$$then $$B_n^2=\sigma^2(S_n)=\sum_{k=1}^n\sigma^2(X_k)=n+\sum_{k=1}^n\frac{1}{2k}-\sum_{k=1}^n\frac{1}{k^2}.$$Let $\delta=2$ in the Lyapunov's condition, we have $$\mathscr{E}(X_k^4)=\frac{1}{2}\left(1-\frac{1}{k^2}\right)+\frac{1}{2}\left(1-\frac{1}{k^2}\right)+k^2\frac{1}{4k^2}+k^2\frac{1}{4k^2}=\frac{3}{2}-\frac{1}{k^2},$$thus the Lyapunov's condition $$\frac{1}{B_n^4}\sum_{k=1}^n\mathscr{E}(X_k^4)=\frac{\frac{3n}{2}-\sum_{k=1}^n\frac{1}{k^2}}{\left[n+\sum_{k=1}^n\frac{1}{2k}-\sum_{k=1}^n\frac{1}{k^2}\right]^2}\rightarrow0\mbox{ as }n\rightarrow\infty,$$holds by comparing the order of $n$.  Hence we have $$\frac{S_n}{B_n}\overset{d}{\rightarrow}\Phi.$$

$\Box$

Related Topic with Uniformly Integrable

About Posts which Tagged by 'Probability'

If $\{|X_n|^\beta,\,n\geq1\}$ is uniformly integrable for some $\beta\geq1$ and $S_n=\sum_{i=1}^nX_i$, then $$\left|\frac{S_n}{n}\right|^\beta\mbox{ is uniformly integrable.}$$

$\bullet$ Proof.

2015年8月23日 星期日

Proof of Lyapunov's Inequality

About Posts which Tagged by 'Probability'

Lyapunov's inequality.  Let $X$ be a random variable.  For $0<s<t$, $$\left(\mathscr{E}|X|^s\right)^\frac{1}{s}\leq \left(\mathscr{E}|X|^t\right)^\frac{1}{t}.$$
See List of Inequalities.

$\bullet$ Proof.

Proof of Chebyshev's inequality

About Posts which Tagged by 'Probability'

Chebyshev's inequality.  Let $X$ be a random variable.  Let $\phi$ be a strictly increasing function on $(0,\infty)$ and $\phi(u)=\phi(-u)$.  Suppose $\mathscr{E}[\phi(X)]<\infty$.  Then $\forall\,u>0$, $$\mathscr{P}\{|X|\geq u\}\leq\frac{\mathscr{E}[\phi(X)]}{\phi(u)}.$$
See List of Inequalities.

$\bullet$ Proof.

Proof of Jensen's inequality

About Posts which Tagged by 'Probability'

Jensen's inequality.  Let $X$ be a random variable.  Let $\phi$ be a convex function.  Suppose $X$ and $\phi(X)$ are integrable. $$\phi(\mathscr{E}X)\leq \mathscr{E}[\phi(X)].$$
See List of Inequalities.

$\bullet$ Proof.

Proof of Minkowski's inequality

About Posts which Tagged by 'Probability'

Minkowski's inequality.  Let $X$ and $Y$ are random variables.  Let $1<p<\infty$. $$\left(\mathscr{E}|X+Y|^p\right)^{\frac{1}{p}}\leq \left(\mathscr{E}|X|^p\right)^{\frac{1}{p}}+\left(\mathscr{E}|Y|^p\right)^{\frac{1}{p}}.$$
See List of Inequalities.

$\bullet$ Proof.

Proof of H$\ddot{o}$lder's inequality

About Posts which Tagged by 'Probability'

H$\ddot{o}$lder's inequality.  Let $X$ and $Y$ are random variables.  Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. $$|\mathscr{E}(XY)|\leq \mathscr{E}|XY|\leq \left(\mathscr{E}|X|^p\right)^{\frac{1}{p}}\left(\mathscr{E}|Y|^q\right)^{\frac{1}{q}}.$$
See List of Inequalities.

$\bullet$ Proof.

Extension of Borel-Cantelli Lemma II

About Posts which Tagged by 'Probability'

Let $\mathscr{F}$ be a Borel field and $\{E_n\}_{n\geq1}\in\mathscr{F}$ are events.  If $\{E_n\}$ are pairwise independent, then the conclusion
$$\sum_{n=1}^\infty \mathscr{P}\{E_n\} = \infty\implies\mathscr{P}\{E_n\mbox{ i.o.}\}=1$$remains true.

[See Borel-Cantelli Lemma]

$\bullet$ Proof.

2015年8月22日 星期六

Application of Lyapunov's Central Limit Theorem (2): Coupon Collector's Problem

About Posts which Tagged by 'Probability'

Coupon Collector's Problem.  Coupons are drawn at random with replacement from among $N$ distinct coupons until exactly $n$ distinct coupons are observed.  Let $S_n$ denote the total number of coupons drawn.  Then $S_n=Y_1+\cdots+Y_n$, where $Y_j$ is the number of coupons drawn after observing $j-1$ distinct coupons until the $j$th distinct coupon is drawn.  Then $Y_1$, ..., $Y_n$ are independent Geometric random variables with means and variances, $$\begin{array}{rl}\mathscr{E}(Y_j)&=\frac{N}{N-j+1};\\ \sigma^2(Y_j)&=\frac{N(j-1)}{(N-j+1)^2}.\end{array}$$Let $n=\lceil Nr\rceil$ for some fixed $r\in(0,1)$, then $$\alpha_n=\mathscr{E}(S_n)=\sum_{j=1}^n\mathscr{E}(Y_j)=\sum_{j=1}^n\frac{N}{N-j+1}=\sum_{j=1}^n\frac{1}{1-\frac{j-1}{N}},$$we have $$N\int_{-\frac{1}{N}}^{r-\frac{1}{N}}\frac{1}{1-x}\,dx\leq\mathscr{E}(S_n)\leq N\int_{0}^{r}\frac{1}{1-x}\,dx.$$Thus, as $N\rightarrow\infty$, $$\underset{N\rightarrow\infty}{\lim}\mathscr{E}(S_n)=\frac{n}{r}\log{\left(\frac{1}{1-r}\right)}.$$Similarly, we have $$\sigma^2_n=\sigma^2(S_n)=\sum_{j=1}^n\sigma^2(Y_j)=\sum_{j=1}^n\frac{N(j-1)}{(N-j+1)^2}=\sum_{j=1}^n\frac{\frac{j-1}{N}}{\left(1-\frac{j-1}{N}\right)^2},$$then $$\underset{N\rightarrow\infty}{\lim}\sigma^2(S_n)=N\int_0^r\frac{x}{(1-x)^2}\,dx=\frac{n}{r}\left(\frac{r}{1-r}+\log{(1-r)}\right).$$Consider the Lyapunov's condition with $\delta=2$.  Since $Y_j\overset{i.i.d.}{\sim}\mbox{Geo}\left(p_j=\frac{N-j+1}{N}\right)$, we have $$\mathscr{E}|Y_j|^4=\frac{1}{p_j^4}(2-p_j)(12-12p_j+p_j^2)<\infty.$$The Lyapunov's condition  $$\begin{array}{rl}\frac{1}{\sigma^4_n}\sum_{j=1}^n\mathscr{E}\left|Y_j-\mathscr{E}(Y_j)\right|^4
&\leq\frac{1}{\sigma^4_n}\sum_{j=1}^n\mathscr{E}|Y_j|^4 \\
&=\frac{1}{\sigma^4_n}\sum_{j=1}^n\left[\frac{1}{p_j^4}(2-p_j)(12-12p_j+p_j^2)\right] \\
&\leq\frac{1}{\sigma^4_n}\sum_{j=1}^n\frac{26}{p_j^4}\quad(\because\,0\leq p_j\leq1)\\
&\leq\frac{26}{\sigma^4_n}N\int_0^r\frac{1}{(1-x)^4}\,dx \\
&=\frac{N}{N^2}\frac{26\cdot c(r)}{\left[\frac{r}{1-r}+\log{(1-r)}\right]^2}\quad (c(r)\mbox{ is a constant})\\
&\rightarrow0\mbox{ as }N\rightarrow\infty\end{array}$$holds.  Thus, $$\sqrt{n}\left(\frac{S_n}{n}-m\right)\overset{d}{\rightarrow}N(0,\sigma^2),$$where $$\begin{array}{rl}nm=\mathscr{E}(S_n) &\implies m=-\frac{\log{(1-r)}}{r}\\
n\sigma^2=\sigma^2_n &\implies\sigma^2=\frac{1}{r}\left(\frac{r}{1-r}+\log{(1-r)}\right).\end{array}$$

2015年8月21日 星期五

Application of Lyapunov's Central Limit Theorem (1)

About Posts which Tagged by 'Probability'

Let $S_n=\sum_{k=1}^nX_{nk}$ and $\{X_{nk}\}$ be independent random variables with $$\mathscr{P}\{X_{nk}=1\}=\frac{1}{n-k+1}=1-\mathscr{P}\{X_{nk}=0\}.$$We have $$\begin{array}{rl}
\alpha_{nk} & = \mathscr{E}(X_{nk}) = \frac{1}{n-k+1}; \\
\sigma^2_{nk} & = \mathscr{E}(X_{nk}-\alpha_{nk})^2 = \frac{1}{n-k+1}\left(1-\frac{1}{n-k+1}\right); \\
\gamma_{nk} & = \mathscr{E}|X_{nk}-\alpha_{nk}|^3 \\
& = \mathscr{E}(X_{nk}^3)-3\alpha_{nk}\mathscr{E}(X_{nk}^2)+3\alpha_{nk}^2\mathscr{E}(X_{nk})-\alpha_{nk}^3\\
&=\frac{1}{n-k+1}-\frac{3}{(n-k+1)^2}+\frac{3}{(n-k+1)^3}-\frac{1}{(n-k+1)^3}\\
&=\frac{(n-k+1)^2-3(n-k+1)+2}{(n-k+1)^3}.
\end{array}$$Let $$\begin{array}{rl}
\sigma^2_n &=\sigma^2(S_n)=\sum_{k=1}^n\sigma^2_{nk}=\sum_{k=1}^n\frac{n-k}{(n-k+1)^2}=\sum_{k=1}^n\frac{k-1}{k^2}; \\
\Gamma_n &=\sum_{k=1}^n\gamma_{nk}=\sum_{k=1}^n\frac{(n-k+1)^2-3(n-k+1)+2}{(n-k+1)^3}=\sum_{k=1}^n\frac{k^2-3k+2}{k^3}.
\end{array}$$By Lyapunov's condition, $$
\frac{1}{\sigma_n^3}\Gamma_n=\frac{\sum_{k=1}^n\frac{k^2-3k+2}{k^3}}{\left(\sum_{k=1}^n\frac{k-1}{k^2}\right)^{3/2}}=\frac{\sum_{k=1}^n\frac{1}{k}-3\sum_{k=1}^n\frac{1}{k^2}+2\sum_{k=1}^n\frac{1}{k^3}}{\left(\sum_{k=1}^n\frac{1}{k}-\sum_{k=1}^n\frac{1}{k^2}\right)^{3/2}}\rightarrow0 $$as $n\rightarrow\infty$ compare to $(\sum_{k=1}^n\frac{1}{k})^{-1/2}$.  We have $(S_n-A_n)/s_n\overset{d}{\rightarrow}N(0,1)$ where $$\begin{array}{rl}A_n&=\sum_{k=1}^n\alpha_{nk}=\sum_{k=1}^n\frac{1}{n-k+1}=\sum_{k=1}^n\frac{1}{k}; \\
s_n&=\sigma_n=\left(\sum_{k=1}^n\frac{1}{k}-\sum_{k=1}^n\frac{1}{k^2}\right)^{1/2}.\end{array}$$

Application of Lindeberg's Central Limit Theorem (2)

About Posts which Tagged by 'Probability'

Let $X_j$ be defined as follows for some $\alpha>1$: $$X_j=\begin{cases}\pm j^\alpha, &\mbox{ with probability }\frac{1}{6\,j^{2(\alpha-1)}}\mbox{ each;}\\0,&\mbox{ with probability }1-\frac{1}{3\,j^{2(\alpha-1)}}.\end{cases}$$ We have $$\begin{array}{rl}
\mathscr{E}(X_j) &=0. \\
\sigma^2(X_j) & =\mathscr{E}(X_j^2)=j^{2\alpha}\frac{2}{6\,j^{2(\alpha-1)}}=\frac{j^2}{3}\implies \\
\sigma^2_n &=\sigma^2(S_n)=\sum_{j=1}^n\sigma^2(X_j)=\sum_{j=1}^n\frac{j^2}{3}=\frac{n(n+1)(2n+1)}{18}. \\
\end{array}$$The Lindeberg's condition is defined as, let $\eta>0$, $$\begin{array}{rl}
\frac{1}{\sigma^2_n}\sum_{j=1}^n\mathscr{E}\left(X_j^2\,I\{|X_j|>\eta\sigma_n\}\right)
& = \frac{1}{\sigma^2_n}\sum_{j=1}^n\mathscr{E}\left(X_j^2\,I\{j^\alpha>\eta\sigma_n\}\right) \\
(\because\,j\leq n)& \leq \frac{1}{\sigma^2_n}\sum_{j=1}^n\mathscr{E}\left(X_j^2\,I\{n^\alpha>\eta\sigma_n\}\right) \\
 & = \frac{1}{\sigma^2_n}\left[\sum_{j=1}^n\mathscr{E}(X_j^2)\right]\,I\{n^\alpha>\eta\sigma_n\} \\
 & = I\{n^\alpha>\eta\sigma_n\}. \\
\end{array}$$Hence, when $I\{n^\alpha>\eta\sigma_n\}=0$, Lindeberg's condition holds.  We have $$I\{n^\alpha>\eta\sigma_n\}=0 \iff n^\alpha<\eta\sigma_n \iff n^\alpha=o(n^{\frac{3}{2}}) \iff \alpha<\frac{3}{2}.$$The Lindeberg's condition is satisfied if and only if $\alpha<3/2$.

Application of Lindeberg's Central Limit Theorem (1)

About Posts which Tagged by 'Probability'

For each $j$ let $X_j$ have the uniform distribution in $[-j,j]$.  We have $$\begin{array}{rl} \mathscr{E}(X_j) &=\frac{-j+j}{2}=0; \\
\sigma^2(X_j) &=\frac{[j-(-j)]^2}{12}=\frac{j^2}{3}\;\Rightarrow\; \\
\sigma^2_n &=\sigma^2(S_n)=\sum_{j=1}^n\sigma^2(X_j)=\sum_{j=1}^n\frac{j^2}{3}=\frac{n(n+1)(2n+1)}{18}.
\end{array}$$The Lindeberg's condition is defined as, for all $\eta>0$, $$\begin{array}{rl}
\frac{1}{\sigma^2_n}\sum_{j=1}^n\mathscr{E}\left(X_j^2\,I\{|X_j|>\eta\sigma_n\}\right)
&  = \frac{1}{\sigma^2_n}\sum_{j=1}^n\mathscr{E}\left(X_j^2\,I\{X_j^2>\eta^2\sigma_n^2\}\right) \\
(\because\,|X_j|\leq n) & \leq \frac{1}{\sigma^2_n}\sum_{j=1}^n\mathscr{E}\left(X_j^2\,I\{n^2>\eta^2\sigma_n^2\}\right) \\
& = \frac{1}{\sigma^2_n}\left[\sum_{j=1}^n\mathscr{E}(X_j^2)\right]\,I\left\{1>\frac{\eta^2\sigma_n^2}{n^2}\right\} \\
& = I\{1>\eta^2\frac{(n+1)(2n+1)}{18n}\}\rightarrow0\mbox{ as }n\rightarrow\infty, \\ \end{array}$$since $(n+1)(2n+1)/18n\rightarrow\infty$ as $n\rightarrow\infty$. Hence Lindeberg's condition holds. Then $$\frac{S_n-\mathscr{E}(S_n)}{\sigma_n}\sim\frac{3}{\sqrt{n}}\left(\frac{S_n}{n}\right)\overset{d}{\rightarrow}\mathscr{N}(0,1).$$
The R code for simulating this result is shown as follows.

set.seed(100)
# set simulation time and total number of summation
sim <- 1000; n <- 100
# simulate sample
s <- sapply(1:sim, function(k) sum(sapply(1:n, function(i) runif(1,-i,i))))
# calculate means
m <- s/n
# draw result
hist(m, freq = FALSE, xlab = 'mean', main = '', border = 'white', col = 'gray')
title(paste0('Histogram of the Mean of Unif(-i,i), i=1,2,..., n'), line = 2)
title(paste0('n = ', n, '; Simulation times = ', sim), line = 0.6)
# compare to normal distribution
curve(dnorm(x, 0, sqrt(n)/3), col = 2, lwd = 2, add = TRUE)
legend('topleft', expression(N(0,sqrt(n)/3)), col = 2, lty = 1, lwd = 2, bty = 'n')




Application of Borel-Cantelli Lemma

About Posts which Tagged by 'Probability'

Let $\{X_n\}_{n\geq1}$ be i.i.d. exponential random variables with parameter $\lambda$, then $$\mathscr{P}\left\{\underset{n\rightarrow\infty}{\limsup}\frac{X_n}{\log{n}}=\frac{1}{\lambda}\right\}=1.$$

 $\bullet$ Proof.

2015年8月17日 星期一

Proof of Fatou's Lemma

About Posts which Tagged by 'Probability'

[Fatou's Lemma.]  If $|X_n|\geq0$ a.e. on $\Lambda$, then $$\int_\Lambda\underset{n\rightarrow\infty}{\liminf}X_n\,d\mathscr{P}\leq\underset{n\rightarrow\infty}{\liminf}\int_\Lambda X_n\,d\mathscr{P}.$$Furthermore, if for all $n$, $|X_n|\leq Y$ a.e. on $\Lambda$ with $\mathscr{E}(Y)<\infty$, the above remains true as well as $$\int_\Lambda\underset{n\rightarrow\infty}{\limsup}X_n\,d\mathscr{P}\geq\underset{n\rightarrow\infty}{\limsup}\int_\Lambda X_n\,d\mathscr{P}.$$In the second statement, it would be false if the condition involving $Y$ is omitted.

Expectation and Tail Probability (3)

About Posts which Tagged by 'Probability'

Let $X$ be a random variable.  For any $r>0$, $\mathscr{E}|X|^r<\infty$, we have $\mathscr{E}|X|^r<\infty$ if and only if $\sum_{n=1}^\infty n^{r-1}\mathscr{P}\{|X|\geq n\}$ converges.

Expectation and Tail Probability (2)

About Posts which Tagged by 'Probability'

Let $X$ be a random variable and $c$ be a fixed constant, $c>0$.  Then $\mathscr{E}|X|<\infty$ if and only if $\sum_{n=1}^\infty \mathscr{P}\{|X|\geq cn\}$ converges.

Application of Fatou's Lemma

About Posts which Tagged by 'Probability'

Let $\{E_n\}$ be events in a Borel field $\mathscr{F}$, we have $$\mathscr{P}\{\underset{n}{\limsup}E_n\}\geq\underset{n}{\overline{\lim}}\mathscr{P}\{E_n\},$$ $$\mathscr{P}\{\underset{n}{\liminf}E_n\}\leq\underset{n}{\underline{\lim}}\mathscr{P}\{E_n\}.$$

2015年8月15日 星期六

Representation of the Characteristic Function

About Posts which Tagged by 'Probability'

We introduce some criteria that a function $f$ is a characteristic function (ch.f.).

1. Bochner's Theorem
$f$ is a ch.f. $\iff$
(1) $f(0)=1$;
(2) $f$ is continuous at $t=0$;
(3) $f$ is positive definite (p.d., see Supp).

The p.d. property is nearly impossible to verify, thus we do not recommend that checking the conditions of Bochner's Theorem.  Practically, the following theorems might be useful to verify a characteristic function.

2. P$\dot{o}$lya's Theorem
If $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfies
(1) $f(0)=1$;
(2) $f(t)\geq0$;
(3) $f(t)=f(-t)$ symmetric;
(4) $f$ is decreasing on $[0,\infty)$;
(5) $f$ is continuous on $[0,\infty)$;
(6) $f$ is convex on $[0,\infty)$,
then $f$ is a ch.f.

3. If $f_\alpha(t)=\exp{\{-|t|^\alpha\}}$, $0<\alpha\leq2$, then $f_\alpha(t)$ is a ch.f.

4. If $f$ is a ch.f., then so is $e^{\lambda(f-1)}$ for each $\lambda\geq0$.


[Supp] A function $f$ is positive definite (p.d.) iff for any finite set of real numbers $t_j$ and complex numbers $z_j$ (with conjugate complex $\bar{z}$), $1\leq j\;eq n$, we have $$\sum_{j=1}^n\sum_{k=1}^n f(t_j-t_k)z_j\bar{z}_k\geq0.$$



Strong LLN v.s. Weak LLN

About Posts which Tagged by 'Probability'

It is clear that SLLN implies WLLN since almost surely convergence implies converge in probability.  Here, we introduce a counterexample that satisfies WLLN but not SLLN.

$\bullet$ Counterexample. (WLLN $\not\Rightarrow$ SLLN)

Lindeberg's CLT v.s. Lyapunov's CLT

About Posts which Tagged by 'Probability'

Let $\{X_{nj}\}$, $n=1,2,...$, $j=1,2,...,k_n$, be a double array of random variables and for each $n$, $X_{n1},\ldots,X_{nk_n}$ are independent.  Define $S_n=\sum_{j=1}^{k_n}X_{nj}$ and $$\begin{array}{ll}
\mathscr{E}(X_{nj})=\alpha_{nj}, & \mathscr{E}(S_n)=\sum_{j=1}^{k_n}\alpha_{nj}=\alpha_n; \\
\sigma^2(X_{nj})=\sigma^2_{nj}, & \sigma^2(S_n)=\sum_{j=1}^{k_n}\sigma^2_{nj}=s^2_n; \\
\mathscr{E}\left(|X_{nj}-\alpha_{nj}|^{2+\delta}\right)=r^{2+\delta}_{nj}, \delta>0.&
\end{array}$$
$\diamondsuit$ Lyapunov's condition:

$\exists\,\delta>0$ such that $\gamma^{2+\delta}_{nj}$ exists for each $n$ and $j$, and $$\underset{n\rightarrow\infty}{\lim}\frac{1}{s^{2+\delta}_n}\sum_{j=1}^{k_n}r^{2+\delta}_{nj}=0.$$

$\diamondsuit$ Lindeberg's condition:
$$\underset{n\rightarrow\infty}{\lim}\frac{1}{s^2_n}\sum_{j=1}^{k_n}\mathscr{E}\left[(X_{nj}-\alpha_{nj})^2\,I\left(|x_{nj}-\alpha_{nj}|>\eta s_n\right)\right]=0, \forall\; \eta>0 $$

[Theorem] If the Lyapunov's condition holds, then so does the Lindeberg's condition.  The converse is NOT true.

Converge in Distribution and Vague Convergence (1): Equivalence for s.p.m.'s

About Posts which Tagged by 'Probability'

[Notations] Sets of Continuous functions.
$C_K\,$: the set of continuous functions $f$ each vanishing outside a compact set $K(f)$.
$C_0\;\,$: the set of continuous functions $f$ such that $\lim_{|x|\rightarrow\infty}f(x)=0$.
$C_B\,$: the set of bounded continuous functions.
$C\;\;\,$: the set of continuous functions.
It is clearly that $f\in C_K\implies f\in C_0\implies f\in C_B\implies f\in C$.

[Theorem] Let $\{\mu_n\}_{n\geq1}$ and $\mu$ be a sequence of s.p.m.'s, then $$\mu_n\overset{v}{\longrightarrow}\mu\iff\forall\,f\in C_K\,(\mbox{or }C_0),\;\int f\,d\mu_n\rightarrow\int f\,d\mu.$$

$\bullet$ Proof.

Slutsky's Theorem

About Posts which Tagged by 'Probability'

If $X_n\rightarrow X$ in distribution, and $Y_n\rightarrow0$ in distribution, then
(1) $X_n+Y_n\rightarrow X$ in distribution;
(2) $X_nY_n\rightarrow 0$ in distribution.


$\bullet$ Proof.

Uniformly Integrable

About Posts which Tagged by 'Probability'

Let $\{X_t\}$, $t\in T$ be a fmaily of random variables where $T$ is an arbitrary index set.  

[Definition] $\{X_t\}$ is said to be uniformly integrable iff $$\underset{A\rightarrow\infty}{\lim}\int_{|X_t|>A}|X_t|\,d\mathscr{P}=0$$ uniformly in $t\in T$.


[Theorem] The family $\{X_t\}$ is uniformly integrable if and only if the following two conditions are satisfied:
(1) $\mathscr{E}|X_t|$ is bounded in $t\in T$.
(2) For every $\varepsilon>0$, there exists $\delta(\varepsilon)>0$ such that for any $E\in\mathscr{F}$, $$\mathscr{P}(E)<\delta(\varepsilon)\implies\int_E|X_t|d\mathscr{P}<\varepsilon\mbox{ for every }t\in T.$$

$\bullet$ Proof.

Convergence Theorems

About Posts which Tagged by 'Probability'

Let $X$ and $\{X_n\}$ be random variables.

1. Monotone Convergence Theorem
If $X_n\geq0$ and $X_n\uparrow X$ a.e. on $\Lambda$, then $$\underset{n\rightarrow\infty}{\lim}\int_\Lambda X_n\,d\mathscr{P}=\int_\Lambda X\,d\mathscr{P}=\int_\Lambda\underset{n\rightarrow\infty}{\lim}X_n\,d\mathscr{P}.$$


2. Dominated Convergence Theorem
If $\underset{n\rightarrow\infty}{\lim}X_n=X$ a.e. and, for all $n$, $|X_n|\leq Y$ a.e. on $\Lambda$ with $\mathscr{E}(Y)<\infty$, then $$\underset{n\rightarrow\infty}{\lim}\int_\Lambda X_n\,d\mathscr{P}=\int_\Lambda X\,d\mathscr{P}=\int_\Lambda\underset{n\rightarrow\infty}{\lim}X_n\,d\mathscr{P}.$$


3. Bounded Convergence Theorem
If $\underset{n\rightarrow\infty}{\lim}X_n=X$ a.e. and there exists a constant $M$ such that, for all $n$, $|X_n|\leq M$ a.e. on $\Lambda$, then $$\underset{n\rightarrow\infty}{\lim}\int_\Lambda X_n\,d\mathscr{P}=\int_\Lambda X\,d\mathscr{P}=\int_\Lambda\underset{n\rightarrow\infty}{\lim}X_n\,d\mathscr{P}.$$


4. Fatou's Lemma
If $|X_n|\geq0$ a.e. on $\Lambda$, then $$\int_\Lambda\underset{n\rightarrow\infty}{\liminf}X_n\,d\mathscr{P}\leq\underset{n\rightarrow\infty}{\liminf}\int_\Lambda X_n\,d\mathscr{P}.$$Furthermore, if for all $n$, $|X_n|\leq Y$ a.e. on $\Lambda$ with $\mathscr{E}(Y)<\infty$, the above remains true as well as $$\int_\Lambda\underset{n\rightarrow\infty}{\limsup}X_n\,d\mathscr{P}\geq\underset{n\rightarrow\infty}{\limsup}\int_\Lambda X_n\,d\mathscr{P}.$$See Proof of Fatou's Lemma
See Application of Fatou's Lemma

2015年8月14日 星期五

Expectation and Tail Probability (1)

About Posts which Tagged by 'Probability'

Let $X$ be a random variable.  We have $$\sum_{n=1}^\infty \mathscr{P}\{|X|\geq n\}\leq \mathscr{E}|X|\leq1+\sum_{n=1}^\infty \mathscr{P}\{|X|\geq n\}$$ so that $\mathscr{E}|X|<\infty$ if and only if $\sum_{n=1}^\infty \mathscr{P}\{|X|\geq n\}$ converges.

Application of Three Series Theorem on Strong Convergence

About Posts which Tagged by 'Probability'

Let $\phi$ be a positive, even and continuous function on $(-\infty,\infty)$ such that as $|x|$ increases, $$\frac{\phi(x)}{|x|}\uparrow,\;\frac{\phi(x)}{x^2}\downarrow.$$ Let $\{X_n\}$ be a sequence of independent random variables with d.f.'s $F_n$ and $\mathscr{E}(X_n)=0$ and $0<a_n\uparrow\infty$.  If, additionally, $\phi$ satisfies $$\sum_n\frac{\mathscr{E}\left(\phi(X_n)\right)}{\phi(a_n)}<\infty,$$ then $$\sum_n\frac{X_n}{a_n}\mbox{ converges  a.e.}$$

Extension of Strong Law of Large Number

About Posts which Tagged by 'Probability'

Let $\{X_n\}$ be a sequence of independent and identically distributed random variables with $\mathscr{E}|X_1|=\infty$.  Let $\{a_n\}$ be a sequence of positive numbers satisfying the condition $a_n/n \uparrow$.  Define $S_n=\sum_j X_j$.  Then we have $$\underset{n\rightarrow\infty}{\limsup}\frac{|S_n|}{a_n}=0\;\mbox{ a.s.,}\mbox{  or  }=+\infty\;\mbox{ a.s.}$$ according as $$\sum_n\mathscr{P}\{|X_n|\geq a_n\}=\sum_n\int_{|x|\geq a_n}\,dF(x)<\infty,\mbox{  or  }=+\infty.$$

$\bullet$ Proof. (The Converge Part)

Extension of Weak Law of Large Number (1)

About Posts which Tagged by 'Probability'

Let $\{X_n\}$ be a sequence of independent random variables with distribution functions $\{F_n\}$.  Define $S_n=\sum_j X_j$.  Let $\{b_n\}$ be a given sequence of real numbers increasing to $+\infty$.  Suppose that we have
(1) $\displaystyle\sum_{j=1}^n\int_{|x|>b_n}\,dF_j(x)=o(1)$,
(2) $\displaystyle\frac{1}{b_n^2}\sum_{j=1}^n\int_{|x|\leq b_n}x^2\,dF_j(x)=o(1)$;
then if we put $$a_n=\sum_{j=1}^n\int_{|x|\leq b_n}x\,dF_j(x),$$ we have $$\frac{1}{b_n}(S_n-a_n)\rightarrow0\mbox{ in probability.}$$

$\bullet$ Proof.

Strong Law of Large Number

About Posts which Tagged by 'Probability'

Let $\{X_n\}$ be a sequence of independent and identically distributed random variables.  Define $S_n=\sum_j X_j$.  Then we have $$\mathscr{E}|X_1|<\infty\implies\frac{S_n}{n}\rightarrow \mathscr{E}(X_1)\;\mbox{ a.s.}$$ $$\mathscr{E}|X_1|=\infty\implies\underset{n\rightarrow\infty}{\limsup}\frac{|S_n|}{n}=+\infty\;\mbox{ a.s.}$$

Kolmogorov's Three Series Theorem

About Posts which Tagged by 'Probability'

Let $\{X_n\}$ be a sequence of independent random variables.  Define for fixed $A>0$, $$Y_n(\omega)=\begin{cases}X_n(\omega),&\mbox{if }|X_n(\omega)|\leq A\\ 0,&\mbox{if }|X_n(\omega)|>A \end{cases}$$ then $\sum_nX_n$ converges a.e. $\iff$ the following three series converge a.e.
(1) $\sum_n\mathscr{P}\{|X_n|>A\}=\sum_n\mathscr{P}\{X_n\neq Y_n\}$;
(2) $\sum_n\mathscr{E}(Y_n)$;
(3) $\sum_n\sigma^2(Y_n)$.

Application of Three Series Theorem on Strong Convergence

Weak Law of Large Number

About Posts which Tagged by 'Probability'

Let $\{X_n\}$ be a sequence of pairwisely independent and identically distributed random variables with finite mean $m$.  Define $S_n=\sum_j X_j$.  Then $$\frac{S_n}{n}\rightarrow m\mbox{ in probability.}$$

Simple Limit Theorems

About Posts which Tagged by 'Probability'

Let $\{X_n\}_{n\geq1}$ be a sequence of random variables, and $S_n=\sum_{j=1}^n X_j$.  To verify $$\frac{S_n-\mathscr{E}(S_n)}{n}\overset{p}{\rightarrow}0,$$ we need to show $\mathscr{E}(S_n^2)=o(n^2)$ inspired by the $L^2$ convergence.  However, it might not be easy.

[Theorem] If $X_j$'s are uncorrelated and their second moment have a common bound, then $$\frac{S_n-\mathscr{E}(S_n)}{n}\rightarrow0$$ is true
(1) in $L^2$;
(2) in probability;
(3) almost surely.


$\bullet$ Proof.

Converge in r-th Mean v.s. Converge in Probability

About Posts which Tagged by 'Probability'

Let $X$ and $\{X_n\}_{n\geq1}$ be random varibles.  $X_n$ converge to $X$ in $r$-th mean implies $X_n$ converge to $X$ in probability.  The converse is NOT true except for $X_n$ being dominated by some random variable with finite $r$-th moment.


Converge in Probability v.s. Converge in Distribution

About Posts which Tagged by 'Probability'

Let $X$ and $\{X_n\}_{n\geq1}$ be random variables with distribution functions $F$ and $\{F_n\}_{n\geq1}$.  $X_n$ converge to $X$ in probability implies $X_n$ converge to $X$ in distribution.  The converse is NOT true except for $F$ degenerating to a constant.


2015年8月13日 星期四

Converge Almost Surely v.s. Converge in r-th Mean

About Posts which Tagged by 'Probability'

Let $X$ and $\{X_n\}_{n\geq1}$ be random variables.  $X_n$ converge to $X$ almost surely dose NOT implies $X_n$ converge to $X$ in $r$-th mean, and vice versa.

Converge Almost Surely v.s. Converge in Probability

About Posts which Tagged by 'Probability'

Let $X$ and $\{X_n\}_{n\geq1}$ be random variables.  $X_n$ converge to $X$ almost surely implies $X_n$ converge to $X$ in probability.  The converse is NOT true except for convergence along a subsequence.

Inequalities for Random Variable

About Posts which Tagged by 'Probability'

Let $X$ and $Y$ be random variables.

(1) [See Proof] H$\ddot{o}$lder's inequality.  Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. $$|\mathscr{E}(XY)|\leq \mathscr{E}|XY|\leq \left(\mathscr{E}|X|^p\right)^{\frac{1}{p}}\left(\mathscr{E}|Y|^q\right)^{\frac{1}{q}}.$$

(2) [See ProofMinkowski's inequality.  Let $1<p<\infty$. $$\left(\mathscr{E}|X+Y|^p\right)^{\frac{1}{p}}\leq \left(\mathscr{E}|X|^p\right)^{\frac{1}{p}}+\left(\mathscr{E}|Y|^p\right)^{\frac{1}{p}}.$$

(3) [See ProofLyapunov's inequality.  For $0<s<t$, $$\left(\mathscr{E}|X|^s\right)^\frac{1}{s}\leq \left(\mathscr{E}|X|^t\right)^\frac{1}{t}.$$

(4) [See ProofJensen's inequality.  Let $\phi$ be a convex function.  Suppose $X$ and $\phi(X)$ are integrable. $$\phi(\mathscr{E}X)\leq \mathscr{E}[\phi(X)].$$

(5) [See ProofChebyshev's inequality.  Let $\phi$ be a strictly increasing function on $(0,\infty)$ and $\phi(u)=\phi(-u)$.  Suppose $\mathscr{E}[\phi(X)]<\infty$.  Then $\forall\,u>0$, $$\mathscr{P}\{|X|\geq u\}\leq\frac{\mathscr{E}[\phi(X)]}{\phi(u)}.$$

(6) [See Proof] If $X\geq0$ and $Y\geq0$, $p\geq0$, then $$\mathscr{E}\{(X+Y)^p\}\leq2^p\{\mathscr{E}(X^p)+\mathscr{E}(Y^p)\}.$$If $p>1$, the factor $2^p$ may be replaced by $2^{p-1}$. If $0\leq p\leq1$, it may be replaced by $1$.

(7) [See Proof] Cantelli's inequality.  Suppose $\sigma^2=\mbox{Var}(X)<\infty$.  Then for $a>0$, we have $$\mathscr{P}\{|X-\mathscr{E}(X)|>a\}\leq\frac{2\sigma^2}{a^2+\sigma^2}.$$

(8) [See Proof] Chebyshev type for maximal sum of random variables I.  Let $\{X_n\}$ be independent random variables such that $\mathscr{E}(X_n)=0$ and $\mathscr{E}(X_n^2)=\sigma^2(X_n)<\infty$ for all $n$, then let $S_n=\sum_{j=1}^nX_j$, we have for every $\varepsilon>0$, $$\mathscr{P}\left\{\underset{1\leq j\leq n}{\max}|S_j|>\varepsilon\right\}\leq\frac{\sigma^2(S_n)}{\varepsilon^2}.$$

(9) [See Proof] Chebyshev type for maximal sum of random variables II.  Let $\{X_n\}$ be independent random variables with finite means and suppose that there exists an $A$ such that $$\forall\,n,\,|X_n-\mathscr{E}(X_n)|\leq A<\infty,$$Then let $S_n=\sum_{j=1}^nX_j$, we have for every $\varepsilon>0$, $$\mathscr{P}\left\{\underset{1\leq j\leq n}{\max}|S_j|\leq\varepsilon\right\}\leq\frac{(2A+4\varepsilon)^2}{\sigma^2(S_n)}.$$

(10) [See Proof] If $\mathscr{E}(X^2)=1$ and $\mathscr{E}|X|\geq a>0$, then $$\mathscr{P}\{|X|\geq\lambda a\}\geq(1-\lambda)^2a^2\mbox{  for }0\leq\lambda\leq1.$$

Linderberg-Feller's Central Limit Theorem (short version)

About Posts which Tagged by 'Probability'

Let $\{X_{nj}\}$, $n=1,2,...$, $j=1,2,...,k_n$, be a double array of random variables and for each $n$, $X_{n1},\ldots,X_{nk_n}$ are independent.  Define $S_n=\sum_{j=1}^{k_n}X_{nj}$ and
$$\begin{array}{ll}
\mathscr{E}(X_{nj})=\alpha_{nj}, & \mathscr{E}(S_n)=\sum_{j=1}^{k_n}\alpha_{nj}=\alpha_n; \\
\sigma^2(X_{nj})=\sigma^2_{nj}, & \sigma^2(S_n)=\sum_{j=1}^{k_n}\sigma^2_{nj}=s^2_n. \\
\end{array}$$If $$\underset{n\rightarrow\infty}{\lim}\frac{1}{s^2_n}\sum_{j=1}^{k_n}\mathscr{E}\left[(X_{nj}-\alpha_{nj})^2\,I\left(|X_{nj}-\alpha_{nj}|>\eta s_n\right)\right]=0, \forall\; \eta>0 $$  Then $$ \frac{S_n-\alpha_n}{s_n}\overset{d}{\longrightarrow} \Phi. $$

$\bullet$ Proof.

Lyapunov's Central Limit Theorem

Declaration for Posts which Tagged by 'Probability'

Let $\{X_{nj}\}$, $n=1,2,...$, $j=1,2,...,k_n$, be a double array of random variables and for each $n$, $X_{n1},\ldots,X_{nk_n}$ are independent.  Define $S_n=\sum_{j=1}^{k_n}X_{nj}$ and $$\begin{array}{ll}
\mathscr{E}(X_{nj})=\alpha_{nj}, & \mathscr{E}(S_n)=\sum_{j=1}^{k_n}\alpha_{nj}=\alpha_n; \\
\sigma^2(X_{nj})=\sigma^2_{nj}, & \sigma^2(S_n)=\sum_{j=1}^{k_n}\sigma^2_{nj}=s^2_n; \\
\mathscr{E}\left(|X_{nj}-\alpha_{nj}|^{2+\delta}\right)=r^{2+\delta}_{nj}, &
\end{array}$$ where $\delta>0$.  If $\gamma^{2+\delta}_{nj}$ exists for each $n$ and $j$, and $$\underset{n\rightarrow\infty}{\lim}\frac{1}{s^{2+\delta}_n}\sum_{j=1}^{k_n}r^{2+\delta}_{nj}=0,$$ then $$ \frac{S_n-\alpha_n}{s_n}\overset{d}{\longrightarrow} \Phi. $$

$\bullet$ Proof.

The Classical Central Limit Theorem

About Posts which Tagged by 'Probability'

Let $\{X_n\}_{n=1}^\infty$ be a sequence of i.i.d. random variables with mean $m$ and finite variance $\sigma^2>0$ and define $S_n=\sum_{j=1}^nX_n$.  Then $$ \frac{S_n-mn}{\sigma\sqrt{n}}\overset{L}{\longrightarrow} \Phi. $$

$\bullet$ Proof.

Borel-Cantelli Lemma

About Posts which Tagged by 'Probability'

Let $\mathscr{F}$ be a Borel field and $\{E_n\}_{n\geq1}\in\mathscr{F}$ are events.  We have
(1) $\sum_{n=1}^\infty \mathscr{P}\{E_n\} < \infty \implies \mathscr{P}\{E_n\mbox{ i.o.}\}=0;$
(2) If $\sum_{n=1}^\infty \mathscr{P}\{E_n\} = \infty$ and $E_n$'s are independent.  Then $\mathscr{P}\{E_n\mbox{ i.o.}\}=1.$

$\bullet$ Proof.

Almost Surely Convergence

About Posts which Tagged by 'Probability'

Let $\Omega$ be the sample space, and, $X$ and $\{X_n\}_{n\geq1}$ be random variables.  We say $X_n$ converges almost surely to $X$ through the following definition.
$$\begin{array}{ccl}X_n\overset{a.s.}{\longrightarrow}X &\Leftrightarrow&\mbox{(1) }\exists\mbox{ null set }N\mbox{ such that }\forall\,\omega\in\Omega\setminus N,\,\underset{n\rightarrow\infty}{\lim}X_n(\omega)=X(\omega)\mbox{ finite} \\
& & \\
&\Leftrightarrow&\mbox{(2) }\forall\,\varepsilon>0,\,\underset{m\rightarrow\infty}{\lim}\mathscr{P}\left\{|X_n-X|\leq\varepsilon,\,\forall\,n\geq m\right\}=1 \\
& &\qquad\mbox{or, }\underset{m\rightarrow\infty}{\lim}\mathscr{P}\left\{|X_n-X|>\varepsilon,\,\mbox{for some}\,n\geq m\right\}=0 \\
& & \\
&\Leftrightarrow&\mbox{(3) }\forall\,\varepsilon>0,\,\mathscr{P}\left\{|X_n-X|>\varepsilon,\,\mbox{i.o.}\right\}=0. \\ \end{array}$$

The first one is the basic definition of almost surely convergence.  But, it might be hard to be used since we must check the convergence for every element in $\Omega$.  Thus, here we introduce some usual tools for checking almost surely convergence derived by the definition.  Finally, we know that the Borel-Cantelli Lemma plays an important role as the most useful tool here.


$\bullet$ Proof.

Convergence Modes and Their Relationship

About Posts which Tagged by 'Probability'

Let $\Omega$ be the sample space, and, $X$ and $\{X_n\}_{n\geq1}$ be random variables with distribution functions $F$ and $F_n$.  There are four common modes of convergence.

1. Converge almost surely.  [See More]$$\begin{array}{ccl}X_n\overset{a.s.}{\longrightarrow}X &\Leftrightarrow&\exists\mbox{ null set }N\mbox{ such that }\forall\,\omega\in\Omega\setminus N,\,\underset{n\rightarrow\infty}{\lim}X_n(\omega)=X(\omega)\mbox{ finite} \\
& & \\
&\Leftrightarrow&\forall\,\varepsilon>0,\,\underset{m\rightarrow\infty}{\lim}\mathscr{P}\left\{|X_n-X|\leq\varepsilon,\,\forall\,n\geq m\right\}=1 \\
& &\qquad\mbox{or, }\underset{m\rightarrow\infty}{\lim}\mathscr{P}\left\{|X_n-X|>\varepsilon,\,\mbox{for some}\,n\geq m\right\}=0 \\
& & \\
&\Leftrightarrow&\forall\,\varepsilon>0,\,\mathscr{P}\left\{|X_n-X|>\varepsilon,\,\mbox{i.o.}\right\}=\mathscr{P}\left\{\bigcap_{m=1}^\infty\bigcup_{n\geq m}\{|X_n-X|>\varepsilon\} \right\}=0 \\ \end{array}$$
2. Converge in $r$-th mean.  $$X_n\overset{L^r}{\longrightarrow}X\iff X_n\in L^r,\,X\in L^r\mbox{ and }\underset{n\rightarrow\infty}{\lim}\mathscr{E}\left(|X_n-X|^r\right)=0.$$
3. Converge in probability.  $$X_n\overset{p}{\longrightarrow}X\iff\forall\,\epsilon>0,\,\underset{n\rightarrow\infty}{\lim}\mathscr{P}\left\{|X_n-X|>\varepsilon\right\}=0.$$
4. Converge vaguely.  Let $\{\mu_n\}_{n\geq1}$ and $\mu$ be subprobability measures (s.p.m.'s, $\mu(\mathbb{R})\leq1$) on $(\mathbb{R}, \mathscr{B})$, where $\mathscr{B}$ is a Borel field. $$\begin{array}{rcl}\mu_n\overset{v}{\longrightarrow}\mu&\iff&\exists\,\mbox{a dense set }D\in\mathbb{R}\mbox{ such that }\\
& &\forall\,a,b\in D,\,a<b,\;\mu_n((a,b])\rightarrow\mu((a,b])\mbox{ as }n\rightarrow\infty.\end{array}$$
5. Converge in distribution.  $$\begin{array}{rl}X_n\overset{d}{\longrightarrow}X&\iff&\forall\,x\in C(F)=\{\mbox{points that }F\mbox{ is continuous}\},\\ & &F_n(x)\rightarrow F(x)\mbox{ as }n\rightarrow\infty.\end{array}$$

The relationship between those modes are as follows
$$\begin{array}{ccccccc}
X_n\overset{a.s.}{\longrightarrow}X & \Rightarrow
& X_n\overset{p}{\longrightarrow}X & \Rightarrow
& X_n\overset{d}{\longrightarrow}X & \equiv
& \mu_n\overset{v}{\longrightarrow}\mu \\
& & \Uparrow& & & &\\
& & X_n\overset{L^r}{\longrightarrow}X & & & &\\ \end{array}$$The converse are false except for some special cases.

$\star$ Converge Almost Surely v.s. Converge in r-th Mean
$\star$ Converge Almost Surely v.s. Converge in Probability
$\star$ Converge in r-th Mean v.s. Converge in Probability
$\star$ Converge in Probability v.s. Converge in Distribution
$\star$ Converge in Distribution and Vague Convergence (1): Equivalence for s.p.m.'s
$\star$ Converge in Distribution and Vague Convergence (2): Equivalence for p.m.'s